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The Newtonian model of a viscous fluid defined by two dimen-
siocnal parameters™ (density p and kinematic viscosity v) gives a good
description of the flow of structureless fluids.** From the thermo-
dynamic viewpoint nonhomogeneous flow of a viscous fluid is linked
with the process of approach to the equilibrium state, whereas the
Newtonian model describes the state of spatially distributed nonequili-
brium. For motions in the region of the scale  the characteristic
time of approach to the equilibrium state 7 = Zvt, de., is largely
determined by this scale. Similar considerations also apply to such
phenomena as diffusion and heat conduction.

However, in real fluids other physical processes also occur and
these admit local description. If local relaxation processes (such as
orientation of particles, reorganization of supramolecular structures,
adaptation of the motion of an admixture to the motion of the fluid
etc.) take place in the medium and exert a strong influence on its
mechanical behavior, then given a2 phenomenclogical approach to
the analysis of motion it is necessary to introduce at least a relaxation
time @ characterizing the rate of approach to the equilibrium state
of the most important of all the processes involved.

The simplest fluid, for both distributed and local nonequilibrium,
will be the fluid defined by the three dimensional parameters p, v,0
(viscoelastic fluid). Note that from these parameters it is possible to
construct the characteristic length oYy, velocity w202, and
modulus of elasticity pp@~ . This further confirms that models v and
9 characterize the motion of structured fluids. The best known phe-
nomenological model of this type is the Maxwell fluid with stress
relaxation.

It is natural to expect a clear manifestation of the special features
of the mechanical behavior of such fluids in turbulent flows, when
motions with different space and time scales occur. Our research is
concerned with the simplest stage of decay of turbulent motion of a
viscoelastic fluid with constant v and 6, when the higher correlation
moments of the velocity and stress fields can be neglected as com-
pared with the second moments, In this case we need not concern our-
selves with the question of the possibility of a different choice of non-
linear terms with respect to velocities and stresses in specific models
of viscoelastic fluids.

§1. Decay in model with stress relaxation. It is
natural to describe the turbulent motions of such a
fluid in terms of random velocity v; and stress oy;
{ields. Below we shall restrict ourselves to a study of
the decay of homogeneous isotropic furbulence. In the
final period of decay the equations of state and the dy-
namic equations can be written directly in linearized
form
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*Henceforth we shall consider only the simple case of an incom-
pressible fluid.
**Under ordinary conditions short-range order is not manifested in
tow-molecular fluids.

Here

Cey = Cayy = 0, p =P —(P), (1.2)

where P is the pressure in the fluid. The true values
of the pressures and shear stresses are equal respec-
tively to pp and PO so that p and ajj are kinematic
quantities.

We introduce the following correlation tensors of
the random fields in question:

{vi(X) v {x + 1)) = Ry (r), {vi{x) o (x + 1)) = Size (1)
(1.3)
i Xy pla+ ) =Ty(r), o () om (x + 1)) = Wije (v)
From system (1.1) for these tensors we get the
system
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From the second of Egs. (1.4) and the solenoidality
of Rij and 87 we have
FW iy ()
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ATICI (l) = (1.5)
where A is the Laplace operator with respect to the
variables ry, (m = 1,2,3).

Using the same letters to denote the Fourier trans-
forms of these tensors, we will distinguish them from
the correlation tensors only in respect of the argu-
ment.

By virtue of isotropy and the solenoidality of the

tensors Rjj and Sjk; we have [1]
Ry () = (wan; — %%035) B ()
Sz (%) = [ (Martp — #30y) +- e (a2 — %283;)] 5 (%) .

(1.6)

From the tensor equations (1.4) we can cbtainscalar
equations for the functions R («), S (x) and for the func-
tion

W (%) == w;%; (i — %300} Wipn (22) o (1.7

These equations have the form
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System (1.8) reduces to a single equation for the
determination of R (®)

1 a /0 2

G+ 3o lar +3) + 5 e n=0. @)

For t » 0 and ® — 0 relation (1. 9) reduces into the
equation

(1.10)

which denotes the existence of a Loitsyanskii invariant
in the final period of decay (1].
The solution of (1.9) has the following form:

R (%, t) = Cy (%, to)exp (__ t-;to) +

+exp(— t_et") [Cg (, to) exp(—- t_et"VT—_m) +
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(1.11)

where t; is some initial moment of time at which it is

already possible to neglect higher-order correlations.

The functions Cy4, C,, and Cy can be expressed in terms
of the functions R (%, ty), S (%, tg) and W(», ty).

Since in the final period of decay interactions be-
tween motions with different ® are neglected (nonlinear
terms disregarded), they damp independently of each
other.

Bearing in mind that there is a characteristic wave
number

(1.12)

Hy = 1/2\7“"26_‘“’2

dividing the wave space into two regions, we will con-
sider the law of attenuation in the two regions sepa-
rately.

At % > ®g, which corresponds to small-scale mo-
tions, we get :

R (#,1) = [Cy (%, to} + Ca (%, to) c'i“’“?"t"” -+ (1.13)
t— ty\
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Equation (1.13) shows that the small-scale motions
decay in accordance with the universal law exp [— (t -
—tg)/6)], while the oscillating behavior of the expression
in square brackets reflects the fact that in the Maxwell
model high-frequency elastic shear waves exist.

Conversely, at ® < ng, which corresponds to large-
scale motions, for t —t; > 0

R (%, 1) = Caemnteti )t (1.15)

By virtue of the solenoidality conditions, as » — 0
the value of Cj (%, tg) will be bounded and equal to
C;(0,ty).

At sufficiently large t —t, the motions with high
wave numbers decay and there remain only the large-
scale motions with a law of attenuation analogous to
that for an ordinary viscous fluid. In this case the
correlation tensor decreases with time in accordance
with the known law of t52 [1].

§2. Decay in a model withrelaxation of shear strain
rates. As another example of a medium with param-
eters v, 4 let us consider a model with shear strain
rate relaxation. In the final period of decay the sys-
tem of linearized equations can be written in the form

dv; _#EII aﬁij dv; -
or  Om, oy Bz, ?

s =v (14203

(2.1)
dv; v
7t )

A model of this type, taking into account local re-
laxation changes of the velocity field, has a quite clear
physical meaning. Thus, in the macroscopic descrip-
tion of the motion of a fluid with suspended particles
as a homogeneous medium, apart from the concentra-
tion change in the viscosity coefficient, it is necessary
to take into account the adaptation of the motion of the
particles to the motion of the fluid. The characteris-
tic relaxation time of this process 8 ~ (pp/pa®?,
where py, p are the density of the solid particles and
the fluid, respectively, and a is the characteristic lin-
ear dimension of the particles.

Assuming isotropy and homogeuneity, we can write
the equation for Rjj (r) as follows:

a
v [(1 — ZVBA) Ri,‘ (1‘)] = 2VAR¢j (l'), 2.2)

a a
bTi“Hij (l‘)——— T’irjRii (l')=0-

For the Fourier transform Rjj (%) from (2. 2) we ob-
tain the expression

Ry (%, £) = (win; — %283) C (3, o) e ™0
v . (2.3)

Vo = m .

From (2.3) it is clear that with decay of turbulence
the behavior of such a fluid is analogous to the law of
decay for a viscous fluid, but with an effective kine-
matic viscosity coefficient depending on the wave num-
ber. -

For » < ng {large-scale fluctuations)

]fi_,' (M, f) = (?{i"{j R xzf)i,») C (0, tu) 2l -1 N (2.4)

where C(O, t;) is a bounded constant.

Conversely, for » > ny (small-scale fluctuations)
we get the universal law of attenuation with respect to
time e-t/9 :

The qualitatively obtained results for a model with
shear strain rate relaxation coincide with the results
obtained in the previous section.

This conclusion is not unexpected and reflects the
general fact of the presence of two relaxation times.
Indeed, we shall consider the behavior of fluctuations
of scale ! or correspondingly of the wave vector n ~ 1/1,
If we consider the scales for which

2 1 .

T o= =0

then for such a scale at t —t; > 0 local relaxation
processes will not play a part and the motion will be
entirely determined by ordinary viscous relaxation.
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The corresponding law of attenuation will be
Rt (2.5)

Conversely, for fluctuations of scale I satisfying the
condition

1 .
T o~ )
Iy =

and corresponding to the case where spatially distrib-
uted nonequilibrium rapidly relaxes, a decisive role at
large t —t, is played only by local relaxation processes
and the law of attenuation is '

B~ ol (2.8)
According to {2], in the fluid model in question ve-

locity jumps also damp exponentially (2.6). This is in
agreement with the above, since when the jump is
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damped it is mainly the high frequencies of the spec-
trum that are distorted.

We note that a real medium is characterized by a
whole spectrum of relaxation times; however, in the
final period of decay the main role will be played by a
certain minimal relaxation time.

The authors thank G. I. Barenblatt for his useful
advice.
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